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Abstract—This paper addresses the problem of improving the accuracy of a multi-output soft
sensor (SS). It is demonstrated that implementing a predictor for the vector time series allows
for consideration of the dynamic interdependence of process components, thereby enhancing
the SS accuracy. The development of a multi-output error predictor is performed using vec-
tor autoregressive models and a set of autoregressive distributed lag models, with their opti-
mal structures and parameters determined by numerical methods. The proposed approach to
developing a multi-output SS is compared with traditional methods based on the sequential
development of single-output SS within the quality control system of the target product (light
diesel fraction) of a complex industrial distillation column. The effectiveness of the proposed
approach is also demonstrated for the class of adaptive SS.
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1. INTRODUCTION

Soft sensors (SS) are key elements of modern process control systems, responsible for providing
feedback on the quality of the final product [1]. Fractional distillation (or fractionation) is one
of the most common and energy-intensive continuous technological processes in oil refining and
the petrochemical industry. In industrial fractionating columns, crude oil feedstock is separated
into various fractions of petroleum products. Typically, the separation occurs in complex columns
featuring several intermediate circulating refluxes and the withdrawal of multiple products. The
target, or most valuable, product is identified, and stabilizing its quality provides significant eco-
nomic benefits for the production facility. Important quality indicators for the target product, such
as the light diesel fraction of a hydrocracking process unit, are the key points of the fractional
composition (initial boiling points, 10, 50, 90, 95%). These are determined in a plant laboratory
at a frequency of once or twice per day, which is insufficient for real-time optimal control tasks.
Therefore, the implementation of a SS primarily serves to estimate the quality indicators of the
products at each control step. A SS typically includes statistical models that correlate hard-to-
measure quality indicators (output variables) with easily accessible measurements (input variables)
of process parameters (temperature, pressure, flow rates, etc.). The efficiency of process control
largely depends on the accuracy of the models within the SS. In this regard, improving the ac-
curacy of the SS is crucial and directly related to enhancing the efficiency of production process
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control [2, 3]. It is worth noting that the task of identifying dependencies between the quality in-
dicators of fractionating column products and a set of input variables has been extensively studied
for the case of a single-output variable [4–8]. Methods for developing SS based on neural networks
have also become widespread. Study [9] is devoted to the development of a dynamic soft sensor
based on a convolutional neural network that accounts for changes in the characteristics of the
analyzed process over time. The use of deep learning methods for developing SS is also known [10].
The work [11] focuses on a neural network training method combining backpropagation with par-
tial least squares. The key advantage of neural network methods is their ability to approximate
nonlinear dependencies with high accuracy on the training sample; however, significant errors can
be observed on the test sample.

It should be noted that the task of developing a multi-output SS (MOSS) is highly relevant.
In comparison with traditional single-output models, multi-output regression analysis better ex-
plains the dependency between the evaluated variables and the input data, due to the correlation
among the output variables when considering complex relationships between the input and output
data [12]. The problem of developing a MOSS can be addressed by developing new methods and
models, as in [13], which describes a method for developing a multi-output SS based on multi-
output tree chaining. The essence of this method lies in constructing an ensemble of trees that
evaluate several output variables simultaneously. Existing methods can also be improved for de-
veloping a MOSS. For instance, [14] presents a modification of the Least-Squares Support Vector
Machine method (LS-SVM) for developing models with multiple outputs and accounting for the
nonlinear relationship between different output data, along with a proposed training method for
such a model.

A widely adopted class of methods for improving SS accuracy for non-stationary plants involves
the development of adaptive SS. The paper [15] is dedicated to the development of ensemble adap-
tive SS based on several Gaussian process models. In [16], the combination of several adaptation
mechanisms to achieve the best SS accuracy is discussed. Methods for developing adaptive SS
based on the Just-In-Time (JIT) approach are also common [17]. The most significant advantage
of methods for developing adaptive soft sensors is the ability to account for process evolution over
time, not only at the level of updating the model parameters but also at the level of updating the
model structure, as shown in works [18, 19] devoted to SS based on the JIT approach combined
with online selection of SS input variables. It should be noted that the effectiveness of the JIT
approach decreases with less data in the training sample, which is a significant limitation in real-
world conditions and prevents its use for developing MOSS in the presence of significant data gaps
or small training samples.

There is also a class of methods for improving the accuracy of SS through bias updates (BU)
of the regression model. In [20], a strategy for updating the bias term of the regression model is
described, based on a Bayesian approach that considers the mean value and standard deviation of
the SS error. A weighted strategy for BU of the regression model is known from [21]. This strategy
is based on considering the previous values of the regression model’s bias term.

The common drawback of the above methods and approaches is their failure to account for the
mutual influence between the evaluated quality indicators, which in some cases can be of significant
importance. There are a number of works treating the task of BU as the task of predicting the SS
error, which allows accounting for the dynamic influence of the error on SS accuracy. For example,
in [22], the bias term update strategy for the MOSS regression model is considered as the task
of predicting the soft sensor error using a moving-average autoregressive model. The work [23] is
devoted to the development of a predictive filter for adaptive SS. It should be noted that the works
[19–22] do not account for the mutual influence of correlated SS errors. In [24], the problem of
predicting the vector of cross-correlated SS errors is solved using analytical methods. However,
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the choice of the predictor model order from auto- and cross-spectral forms does not allow for
structural adaptation of the predictor in online mode at each discrete time step, and also increases
the complexity of developing SS for the case of n-outputs.

This paper proposes a method for developing a MOSS with a predictor, distinguished by tak-
ing into account the interdependence of errors using vector autoregressive (VAR) models [25] or
autoregressive distributed lag (ARDL) models [26] These models are developed using numerical
methods, which allows for both structural and parametric adaptation of the SS error predictor at
each discrete moment in time in a closed loop of the quality control system for the target product
of a continuous technological process.

2. PLANT DESCRIPTION AND PROBLEM STATEMENT

The object of the study is a complex distillation column of a hydrocracking process unit for
separating the feed into the following products: gasoline fraction (GF), kerosene fraction (KF),
light diesel fraction (LDF), heavy diesel fraction (HDF), and hydrocracking residue (HR). LDF is
subsequently used as a component of arctic diesel fuel (ADF). Figure 1 shows the flow chart of the
distillation process and the control system with a controller based on the predictive model (PM)
for the LDF fractional composition. The following conventions are used: K1 – complex distillation

Fig. 1. Industrial plant scheme and control system.
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column; K2 – kerosene fraction stripping column; K3 – diesel fraction stripping column; K4 –
heavy diesel fraction stripping column; HE1 – gasoline fraction vapor condenser; HE2 – reboiler of
column K2, HE3 – reboiler of column K3, HE4 – cooler of upper circulation reflux; HE5 – cooler of
lower circulation reflux; V1-1 – valve on bypass of HE1; V2-1 – valve on outlet of HE2; V2-2 – valve
on bypass of HE2; V2-3 – valve on flow line of KF for mixing with LDF; V3-1 – valve on outlet
of HE3; V3-2 – valve on bypass of HE3; V3-3 – valve on flow line of LDF for mixing with KF.
Table 1 shows a fragment of matrix of gain factors of process object. Table 2 shows the input
variables of the fractional composition (FC) of the LDF used in industrial conditions: FC initial
boiling point (IBP), 10, 50, 95%.

Table 1. Fragment of the gain factors matrix of an industrial plant

SS
TC232

(K1 top temp.)
TC203

(K2 temp.)
TC204

(K3 temp.)

FC117
(KF rate for mixing

with LDF)

FC188
(LDF rate for mixing

with KF)

FC IBP 2,2 2,4 2,7 0,5

FC 10% 1,1 1,2 2,3 0,35

FC 50% 0,2 1,2

FC 90% 1,7

Table 2. MOSS input variables

No. Designation Description Unit of meas.

1 P131 K1 top pressure MPa

2 P124 K1 bot pressure MPa

3 FC105 K1 reflux rate m3/h

4 FC106 K1 top pumparound stream m3/h

5 FC107 K1 bottom pumparound stream m3/h

6 FC116 KF product rate m3/h

7 FC117 KF rate for mixing with LDF m3/h

8 FC188 LDF rate for mixing with KF m3/h

9 TC232 K1 top temperature ◦C
10 T233 Return upper product temperature from K2 to K1 ◦C
11 T234 Return upper product temperature from K3 to K1 ◦C
12 T235 Return upper product temperature from K4 to K1 ◦C
13 T238 Sidestream temperature from K1 to K2 ◦C
14 T239 Sidestream temperature from K1 to K3 ◦C
15 T240 Sidestream temperature from K1 to K4 ◦C
16 T242 Temperature above the feedstock input zone in K1 ◦C
17 T247 Temperature at the outlet of HE2 into K2 ◦C
18 T248 Temperature at the outlet from K2 to HE2 ◦C
19 T253 Temperature at the outlet from HE3 to K3 ◦C
20 T254 Temperature at the outlet from K3 to HE3 ◦C
21 TC275 Temperature of bottom pumparound to K1 ◦C
22 TC279 Temperature of top pumparound to K1 ◦C
23 FY098 K1 feed rate m3/h

The problem of estimating the parameters of the MOSS and constructing a model of correlated
error predictor of the SS is considered. In general, the MOSS model with a correlated error predictor
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(MOSS with a CEP) has the following form:

Ŷ ∗
t = KXt + b̃+ΦEpast

t , (1)

where Ŷ ∗
t =

(
ŷ∗1,t . . . ŷ∗j,t . . . ŷ∗N,t

)T
is a vector of estimated values of quality indicators;

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k1,1 . . . k1,j . . . k1,m
...

. . .
...

. . .
...

kh,1 . . . kh,j . . . kh,m
...

. . .
...

. . .
...

kN,1 . . . kN,j . . . kN,m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is a MOSS coefficient matrix; Xt =

(
x1,t . . . xj,t . . . xm,t

)T

is MOSS input variables vector; b̃ =
(
b1 . . . bh . . . bN

)T
is a MOSS free term vector;

m is a number of MOSS input variables; N is a number of MOSS output variables;

Φ =

⎛⎜⎜⎝
φ1,1|1 . . . φ1,1|α . . . φ1,N |1 . . . φ1,N |α
...

. . .
... . . .

...
. . .

...
φN,1|1 . . . φN,1|α . . . φN,N |1 . . . φN,N |α

⎞⎟⎟⎠ is a coefficient matrix of MOSS correlated

error predictor; φi,j|α is αth MOSS correlated error predictor coefficient for considering
of the influence between the jth and ith components of the multivariable error series;

Epast
t =

(
e1,t−1 . . . e1,t−α . . . eN,t−1 . . . eN,t−α

)T
is an error predictor input vector; α is an error

predictor order; ei,t = yi,t −
(
bi +

[
K
]
i
Xt

)
is a MOSS estimation error of the ith quality indicator

at time t;
[
·
]
i
is an ith matrix row.

MOSS with a preliminary whitening correlated error predictor (i.e. with passage through a filter
that equalizes the spectral density) of an error series using the AR model (MOSS with a WCEP)
is described by the expression:

Ŷ ∗∗
t = KXt + b̃+WEpast

t + Φ̃V past
t , (2)

where Epast
t =

(
e1,t−1 . . . e1,t−q . . . eN,t−1 . . . eN,t−q

)T
is a MOSS error vector;

W =

⎛⎜⎜⎜⎜⎝
w1,1|1 . . . w1,1|q 0 . . . 0 . . . 0 . . . 0

0 . . . 0 w2,2|1 . . . w2,2|q . . . 0 . . . 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...
0 . . . 0 0 . . . 0 . . . wN,N |1 . . . wN,N |q

⎞⎟⎟⎟⎟⎠ is a whitening pre-

dictor coefficient matrix with order q; wi,j|q is a qth whitening predictor coefficient for
considering the influence of the jth element on the ith multidimensional error series;

Φ̃ =

⎛⎜⎜⎝
φ̃1,1|1 . . . φ̃1,1|α̃ . . . φ̃1,N |1 . . . φ̃1,N |α̃
...

. . .
...

. . .
...

. . .
...

φ̃N,1|1 . . . φ̃N,1|α̃ . . . φ̃N,N |1 . . . φ̃N,N |α̃

⎞⎟⎟⎠ is a whitening correlated error predictor

coefficient matrix with order α̃; V past
t =

(
v1,t−1 . . . v1,t−α̃ . . . vN,t−1 . . . vN,t−α̃

)T
is an error

predictor input vector; vi,t = ei,t −
[
W
]
i
Epast

t is a whitening error for ith quality indicator MOSS
error.

The required parameters matrix θ1 for (1) and θ2 for (2) have the following form:

θ1 =
(
K b̃ Φ

)
, (3)

θ2 =
(
K b̃ W Φ̃

)
. (4)
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The determination of estimates of unknown parameters θz (z = 1, 2) is carried out by solving
an optimization problem for a given quality functional J :

θ̂z = argmin
θz∈R

J(θz). (5)

The MOSS mean square error is considered as the criterion J :

J =
1

n

n∑
i=1

∣∣∣∣∣∣Yi − Ŷi (θz)
∣∣∣∣∣∣2 , (6)

where Yi and Ŷi are the vectors of measured and estimated values of the target product quality
indicators, respectively; n is an observations number in a sample; ||·|| is an Euclidean norm.

3. DEVELOPING A MULTI-OUTPUT SOFT SENSOR

The diagram of the proposed multi-output soft sensor with a predictor as part of the control
system is shown in Fig. 2, where MPC is a model predictive controller; G(U) is an industrial plant;
U is the control actions vector; Ŷt is a SS estimate (no consideration of error predictor); et is a
vector of SS errors; vt is a vector of whitening errors; êt is an error prediction; v̂t is a whitening
error prediction; B is the back shift operator. The main advantage of the proposed multi-output
soft sensor lies in accounting for the dynamic influence of correlated errors in evaluating the quality
indicators of the target product of a complex fractionating column. It should be noted that the
proposed predictor is an add-on to any model within the multi-output soft sensor and can be used
in combination with other models, such as neural network models that form the basic component
of the yield estimation Ŷt.

Fig. 2. Structural scheme of the control system with MOSS with a predictor of correlated errors: (a) without
preliminary whitening; (b) with preliminary whitening.

In expressions (1) and (2) the first two terms (KXt+ b̃) represent the multiple linear regression
(MLR) model, which is widely used in industrial settings [27].

The search for a solution to the optimization problem (5) consists of several stages. At the first

stage, the first two blocks of the matrix θz (K̂ and ˆ̃b), which are responsible for the model within
the MOSS, are determined:

{K̂,
ˆ̃
b} = argmin

K,b̃∈R

1

n

n∑
i=1

∣∣∣∣∣∣Yi −
(
KXi + b̃

)∣∣∣∣∣∣2 . (7)
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At the second stage, the MOSS error predictor is developed, i.e. the third block of matrices θz is
determined. At this stage, for the multi-output soft sensor with a correlated error predictor (CEP),
Φ̂ is determined taking into account the cross-correlations of the MOSS errors:

Φ̂ = argmin
Φ∈R

1

n

n∑
i=1

∣∣∣∣∣∣ei − ΦEpast
i

∣∣∣∣∣∣2 . (8)

For the MOSS with a whitening correlated error predictor (WCEP), Ŵ is determined, i.e. the
parameters of the “whitening” predictor are determined without taking into account the cross-
correlations of the MOSS errors:

Ŵ = argmin
W∈R

1

n

n∑
i=1

∣∣∣∣∣∣ei −WEpast
i

∣∣∣∣∣∣2 . (9)

Since the interdependence of the error series is not accounted for in the MOSS with a WCEP
in the previous stage, a third stage becomes necessary, during which the optimal parameters of the

“whitening” error predictor ˆ̃Φ are determined, taking their cross-correlation into account:

ˆ̃Φ = argmin
Φ̃∈R

1

n

n∑
i=1

∣∣∣∣∣∣vi − Φ̃V past
i

∣∣∣∣∣∣2 . (10)

Well-known autoregressive (AR) models can be used as a model of the “whitening” predictor W .
Typically, single-output AR models make it possible to significantly increase the SS accuracy.
However, this approach has its drawbacks, namely, it does not account for the correlation of SS
errors for interconnected quality indicators.

The MOSS with a CEP described in (1) is further considered for the case N = 2, and its
parameters θ1 are found using (7) and (8). In this paper, the CEP for the MOSS is implemented
based on the following VAR model: (

ê1,t ê2,t
)T

= ΩE
(q)
t , (11)

where Ω =

(
ω1,1|1 . . . ω1,1|j . . . ω1,1|q ω1,2|1 . . . ω1,2|j . . . ω1,2|q
ω2,1|1 . . . ω2,1|j . . . ω2,1|q ω2,2|1 . . . ω2,2|j . . . ω2,2|q

)
is the coefficients matrix

of the VAR model; E
(q)
t =

(
e1,t−1 . . . e1,t−j . . . e1,t−q e2,t−1 . . . e2,t−j . . . e2,t−q

)T
is the input

vector of the VAR model; q is VAR model order.

This paper also considers another method for implementing the CEP using an ARDL model [26]
of the following form:

ê1|t = a1E
endo(1)
1|t + l1E

exo(1)
2|t , ê2|t = a1E

endo(2)
2|t + l2E

exo(2)
1|t , (12)

where a1 =
(
a1,1 . . . a1,j . . . a1,A1

)
and a2 =

(
a2,1 . . . a2,j . . . a2,A2

)
are the regression coeffi-

cients of the endogenous component of the model error series ê1 and ê2; l1 =
(
l1,1 . . . l1,j . . . l1,L1

)
and l2 =

(
l2,1 . . . l2,j . . . l2,L2

)
are the regression coefficients of the exogenous compo-

nent of the model error series ê1 and ê2; E
endo(1)
1|t =

(
e1,t−1 . . . e1,t−j . . . e1,t−A1

)T
and

E
endo(2)
2|t =

(
e2,t−1 . . . e2,t−j . . . e2,t−A2

)T
are the input vectors of the endogenous component

of the model error series ê1 and ê2; E
exo(1)
2|t =

(
e2,t−d1 . . . e2,t−d1−j . . . e2,t−d1−L1+1

)T
and
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E
exo(2)
1|t =

(
e1,t−d2 . . . e1,t−d2−j . . . e1,t−d2−L2+1

)T
are the input vectors of the exogenous com-

ponent of the model error series ê1 and ê2; A1 and A2 are the regression orders of the endogenous
component of the model error series ê1 and ê2; d1 and d2 are the lags of the exogenous component
of the model error series ê1 and ê2; L1 and L2 are the regression orders of the exogenous component
of the model error series ê1 and ê2.

The ARDL model is a more flexible tool for accounting for the correlation of SS errors in
comparison with the VAR model, since it makes it possible to set different regression orders for
endogenous and exogenous components, as well as the lag value for the exogenous component. The
proposed approach to developing a SS includes the possibility of preliminary whitening (2) of the
SS error series (correction of the SS error using the AR model) before applying the VAR or ARDL
models (MOSS with a WCEP). The parameters of the MOSS with a WCEP are found using (7),
(9), (10). In this case, the VAR and ARDL models are used to forecast not the SS errors but the
whitening errors:

v1,t = e1,t − ê1,t, v2,t = e2,t − ê2,t. (13)

Therefore, the VAR (11) and ARDL (12) models take the form (14) and (15), respectively:(
v̂1,t v̂2,t

)T
= ΩV

(q)
t , (14)

where V
(q)
t =

(
v1,t−1 . . . v1,t−j . . . v1,t−q v2,t−1 . . . v2,t−j . . . v2,t−q

)T
is a VAR model input

vector.

v̂1|t = a1V
endo(1)
1|t + l1V

exo(1)
2|t , ê2|t = a2V

endo(2)
2|t + l2V

exo(2)
1|t , (15)

where V
endo(1)
1|t =

(
v1,t−1 . . . v1,t−j . . . v1,t−A1

)T
and

V
endo(2)
2|t =

(
v2,t−1 . . . v2,t−j . . . v2,t−A2

)T
are the input vectors of the endogenous compo-

nent of the model error series v̂1 and v̂2;

V
exo(1)
2|t =

(
v2,t−d1 . . . v2,t−d1−j . . . v2,t−d1−L1+1

)T
and

V
exo(2)
1|t =

(
v1,t−d2 . . . v1,t−d2−j . . . v1,t−d2−L2+1

)T
are the input vectors of the exogenous

component of the model error series v̂1 and v̂2.

As a rule, the order of an AR model for a time series is determined by visual analysis of its
correlogram or autospectrum. Despite the wide prevalence of this approach, in the present work,
a numerical method is used to determine the AR model order, based on the analysis of the partial
autocorrelation estimate ψ̂k, determined by the Yule-Walker equation:

Ψ̂(k) = P−1
k ρ(k), (16)

where k is the lag; Ψ̂(k) =
(
ψ̂1 . . . ψ̂j . . . ψ̂k

)T
is an AR model coefficients vector with

order k; ρ(k) =
(
r1 . . . rj . . . rk

)T
is an autocorrelation vector of estimates before lag k;

Pk =

⎛⎜⎜⎜⎜⎜⎜⎝
1 r1 r2 . . . rk−1

r1 1 r1 . . . rk−2

r2 r1 1 . . . rk−3
...

...
...

. . .
...

rk−1 rk−2 rk−3 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠ is the Toeplitz matrix based on ρ(k). The equation (16) links

the coefficients of the AR model and the values of the autocorrelation estimate [28]. The use of
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numerical methods allows for the automation of the AR model order determination process and
the implementation of structural predictor adaptation. The method for determining the AR model
order based on the analysis of the estimate ψ̂k is as follows. The value of the partial autocorrela-

tion estimate at lag k is set to zero if
∣∣∣ψ̂k

∣∣∣ < 2σ̂ψ̂k
, where σ̂ψ̂k

is the standard error of the partial

autocorrelation estimates, defined as σ̂ψ̂k
= 1

n . Then, the maximum lag value k for which ψ̂k �= 0
is used as the order p.

Partial autocorrelation is also used to determine the order q of the VAR model. Using the
approach described above, the orders of the AR models for each error series included in the vector
model are determined, after which the smallest of the previously obtained AR model orders is
chosen as the vector model order q. This approach helps to avoid including redundant variables in
the model.

To determine the values of A and L for the ARDL model, the method from [29] can be used,
which is based on identifying the instability of the figures of the model parameter estimates as the
model structure becomes more complex. A sequential increase in the model order is performed as
long as the following condition is met:

q−1∑
i=0

sgn b
(q−1)
i sgn b

(q)
i = q − 1, (17)

where q is order of model: x̂t+1 = b
(q)
0 xt + b

(q)
1 xt−1 + . . . + b

(q)
q xt−q =

∑q
i=0 b

(q)
i xt−i. The orders A

and L of the ARDL model are determined in a similar manner. The methods presented above
for determining the orders of AR, VAR, and ARDL models are used to implement the structural
adaptation of the error predictors in online-mode, i.e., at each discrete time step.

The coefficients of the AR model are determined using the Yule-Walker equation:

WY W = P−1
τ ρ(τ), (18)

where WY W =
(
w1 . . . wj . . . wp

)T
is the coefficients vector of AR model order p;

ρ(τ) =
(
r1 . . . rj . . . rτ

)T
is the vector of autocorrelation estimates before the lag τ = p; Pτ is

the Toeplitz matrix based on ρ(τ) determined as in the (16). The tasks (8) and (10) for finding the
parameters of the VAR and ARDL models are solved using the least squares method.

4. EXPERIMENTAL VALIDATION AND DISCUSSION OF RESULTS

The proposed approach for developing a multi-output soft sensor with a predictor was tested as
follows. To implement the error predictors that account for the correlation of soft sensor errors for
the fractional composition (FC), pairs are considered: the first pair is the initial boiling point of
fractional composition (IBP FC) and 10% FC; the second pair is 50% FC and 95% FC. Figures 3
and 4 show the presence of a dynamic relationship between the selected pairs of soft sensor error
time series using smoothed squared coherency spectral estimate smoothed sample estimates [30] of
the squared coherence spectrum :

K
2
12(λ) =

A
2
12(λ)

C11(λ)C22(λ)
, 0 � λ � F, (19)

where A12(λ) =
√
L
2
12(λ) +Q

2
12(λ), 0 < λ < F is the smoothed cross amplitude spectral estimate;

L12(λ) = 2

(
l̃12 (0)+2

L−1∑
κ=1

l̃12 (κ) β (κ) cos πκλ
F

)
, 0� λ� F and Q12(λ) = 4

L−1∑
κ=1

q̃12 (κ) β (κ) sin πκλ
F ,
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Fig. 3. Smoothed sample estimate of the quadrature coherency spectrum of SS IBP FC and FC 10% errors
on the training sample.

Fig. 4. Smoothed sample estimate of the quadrature coherency spectrum of SS FC 50% and FC 95% errors
on the training sample.
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1 � λ � F − 1 are the smoothed co- and quadrature spectral estimates, respectively;
l̃12 (κ) = 0.5 (c12 (κ) + c12 (−κ)), 0 � κ � L− 1 are the even cross covariance function estimates;
q̃12 (κ) = 0.5 (c12 (κ)− c12 (−κ)), 0 � κ � L− 1 are the odd cross covariance function estimates;

c12 (κ) = 1
n

n−κ∑
t=1

(e1,t − e1) (e2,t+κ − e2), c12 (−κ) = 1
n

n−κ∑
t=1

(e1,t+κ − e1) (e2,t − e2), 0 � κ � L− 1 is

the cross covariance function estimate; C11(λ) = 2

(
c11 (0) + 2

L−1∑
κ=1

c11 (κ) β (κ) cos πκλ
F

)
, 0 � λ � F

is the smoothed spectral estimate; β (κ) =

{
1− |κ|

M , |κ| � M

0, |κ| > M
is the Bartlett window; c11 (κ) =

1
n

n−κ∑
t=1

(e1,t − e1) (e1,t+κ − e1), 0 � κ � L−1 is the autocovariance function estimate; e1 =
1
n

n∑
t=1

e1,t is

mean of the SS error; L is number of lags of used covariation functions; F is the maximum frequency
of calculating spectral estimates; estimates C22(λ) and c22 (κ) are calculated similarly as C11(λ)
and c11 (κ).

The amplitude values of the squared coherence spectrum shown in Fig. 3 are greater than 0.6
in the low-frequency region, indicating a close relationship between the soft sensor errors for IBP
FC and 10% FC and low autocorrelation of the error series for these indicators. The graph in
Fig. 4 reflects a relationship between the soft sensor errors for 50% FC and 95% FC, but there is
significant autocorrelation of the soft sensor errors for one of the indicators in the low-frequency
region, which is expressed by a low amplitude value of the smoothed sample estimate of the squared
coherence spectrum, around 0.15.

The proposed MOSS is compared with an error predictor based on an AR model (which does
not account for SS error correlation and is widely used in industry) through the procedure of bias
update (BU) for the MLR model within the SS. The proposed approach is implemented for both
adaptive (AdaptSS) and non-adaptive SS. The adaptation is implemented within the framework
of the moving window (MW) method. Versions of the error predictors with structural adaptation
(SA) and parametric adaptation (PA) are also implemented. PA is understood as the recalculation
of the predictor parameters on the shifted MW without changing their order, which is determined
by the methods described in the previous section during the first MW iteration. SA is understood
as the calculation of the predictor parameters along with the determination of their order at each
shift of the MW.

The total available sample contains 1382 observations. It is divided into a training sample with
967 observations and a test sample with 415 observations. For adaptive soft sensors and predictors,
the size of the SW is the same as the size of the training sample for non-adaptive SS.

Tables 3 and 4 present the test results for non-adaptive and adaptive soft sensors, respectively.
The coefficient of determination R2

j and the mean absolute error (MAEj) were used as accuracy
criteria for the jth quality indicator:

R2
j = 1−

∑n
i=1 (yj,i − ŷj,i)

2∑n
i=1

(
yj,i − yj

)2 , (20)

MAEj =
1

n

n∑
i=1

|yj,i − ŷj,i| , (21)

where yj,i – laboratory value of jth quality indicator; ŷj,i – estimate of jth quality indicator;
yj =

1
n

∑n
i=1 yj,i.

It should be noted that the model parameters were found according to criterion (6). Criteria
(20) and (21) are used for comparative analysis due to their widespread use in monitoring and
automation systems for industrial processes.
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Table 3. Testing results for non-adaptive SS

Type of SS

Pair with correlated errors Pair with correlated errors

IBP FC 10% FC 50% FC 95% FC

R2 MAE R2 MAE R2 MAE R2 MAE

Industrial approaches

SS MLR 0.250 13.590 0.506 10.177 0.824 4.735 0.274 7.302

SS BU 0.667 9.023 0.776 6.808 0.905 3.293 0.601 5.105

The proposed method in comparison with the AR model (non-adaptive)

SS AR 0.872 5.108 0.851 4.974 0.928 2.606 0.375 6.418

SS ARDL 0.868 5.180 0.909 3.731 0.927 2.679 0.707 4.047

SS VAR 0.868 5.184 0.909 3.732 0.928 2.678 0.707 4.048

SS AR ARDL 0.873 5.063 0.839 5.166 0.928 2.606 0.397 6.298

SS AR VAR 0.872 5.108 0.851 4.975 0.928 2.607 0.375 6.416

The proposed method in comparison with the AR model (parametric adaptation)

SS AR PA 0.887 4.558 0.829 5.373 0.933 2.443 0.372 6.378

SS ARDL PA 0.883 4.654 0.914 3.510 0.933 2.473 0.715 3.910

SS VAR PA 0.883 4.647 0.914 3.507 0.933 2.472 0.715 3.909

SS AR PA ARDL PA 0.888 4.522 0.819 5.552 0.933 2.450 0.395 6.269

SS AR PA VAR PA 0.887 4.551 0.829 5.375 0.933 2.441 0.373 6.375

The proposed method in comparison with the AR model (structural adaptation)

SS AR SA 0.885 4.652 0.828 5.366 0.933 2.479 0.372 6.378

SS ARDL SA 0.883 4.654 0.914 3.510 0.933 2.473 0.715 3.910

SS VAR SA 0.883 4.607 0.914 3.485 0.933 2.472 0.715 3.909

SS AR SA ARDL SA 0.887 4.565 0.817 5.592 0.932 2.469 0.395 6.274

SS AR SA VAR SA 0.885 4.645 0.828 5.369 0.933 2.478 0.373 6.375

Table 4. Testing results for adaptive SS

Type of SS

Pair with correlated errors Pair with correlated errors

IBP FC 10% FC 50% FC 95% FC

R2 MAE R2 MAE R2 MAE R2 MAE

Industrial approaches

AdaptSS MLR 0.549 10.642 0.659 8.522 0.892 3.401 0.494 5.579

AdaptSS BU 0.771 7.504 0.828 5.899 0.930 2.566 0.677 4.251

The proposed method in comparison with the AR model (non-adaptive)

AdaptSS AR 0.877 4.904 0.885 4.131 0.938 2.279 0.545 5.328

AdaptSS ARDL 0.877 4.935 0.912 3.694 0.939 2.268 0.729 3.657

AdaptSS VAR 0.877 4.938 0.912 3.694 0.939 2.267 0.729 3.659

AdaptSS AR ARDL 0.879 4.861 0.877 4.268 0.938 2.272 0.560 5.225

AdaptSS AR VAR 0.877 4.905 0.885 4.131 0.938 2.280 0.546 5.325

The proposed method in comparison with the AR model (parametric adaptation)

AdaptSS AR PA 0.879 4.857 0.885 4.137 0.939 2.247 0.545 5.334

AdaptSS ARDL PA 0.879 4.886 0.913 3.671 0.939 2.248 0.728 3.661

AdaptSS VAR PA 0.879 4.883 0.913 3.669 0.939 2.248 0.728 3.660

AdaptSS AR PA ARDL PA 0.880 4.810 0.877 4.286 0.938 2.245 0.561 5.217

AdaptSS AR PA VAR PA 0.879 4.854 0.885 4.137 0.939 2.246 0.545 5.332

The proposed method in comparison with the AR model (structural adaptation)

AdaptSS AR SA 0.876 4.932 0.885 4.175 0.938 2.247 0.545 5.330

AdaptSS ARDL SA 0.879 4.886 0.913 3.671 0.939 2.248 0.728 3.661

AdaptSS VAR SA 0.882 4.802 0.915 3.647 0.939 2.248 0.728 3.660

AdaptSS AR SA ARDL SA 0.878 4.849 0.876 4.347 0.939 2.249 0.561 5.219

AdaptSS AR SA VAR SA 0.876 4.929 0.885 4.176 0.939 2.246 0.545 5.329
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Based on Tables 3 and 4, for IBP FC estimation, the best results in terms of accuracy criteria
are achieved using the MOSS with a WCEP of type (2). For the 10% FC estimation, the MOSS
with a CEP of type (1) shows the best results. For the 95% FC, the MOSS with a CEP of type (1)
also shows the best results. A high degree of similarity is noted in the results of the MOSS with
a CEP of type (1) based on VAR and ARDL models, and their significant advantage over the SS
with an error predictor based on an AR model is also noted.

According to Fig. 4 and Tables 3, 4, the minor effect from using the CEP for the 50% FC SS
(in comparison with the CEP for other SSs) is associated with an insufficiently strong dependence
of the 50% FC SS errors on the 95% FC SS errors, as well as the presence of significant serial
correlation in the 50% FC SS errors.

Tables 5 and 6 show the percentage change in accuracy criteria for the best result relative to
the baseline methods (SS, SS BU, SS AR, SS AR PA, SS AR SA), which do not account for error
cross-correlation for non-adaptive and adaptive SS, respectively. According to Tables 5 and 6, the
lowest mean absolute error (MAE) is most often achieved using a CEP based on a VAR model with
parametric or structural adaptation (VAR PA, VAR SA are highlighted in bold in the tables).

Table 5. Change of the accuracy criteria for non-adaptive SS

Type of SS

Pair with correlated errors Pair with correlated errors

IBP FC 10% FC 50% FC 95% FC

R2 MAE R2 MAE R2 MAE R2 MAE

Basic method

SS MLR 71.83% 66.73% 44.62% 65.76% 11.67% 48.41% 61.69% 46.47%

SS BU 24.93% 49.88% 15.10% 48.81% 3.08% 25.81% 15.92% 23.44%

SS AR 1.82% 11.47% 6.95% 29.94% 0.53% 6.26% 47.55% 39.10%

SS AR PA 0.11% 0.79% 9.32% 35.15% 0.00% 0.00% 47.90% 38.72%

SS AR SA 0.36% 2.79% 9.39% 35.07% 0.08% 1.48% 47.90% 38.72%

Best result

SS AR PA
ARDL PA

SS VAR SA SS AR PA SS VAR PA

R2 MAE R2 MAE R2 MAE R2 MAE

0.888 4.522 0.914 3.485 0.933 2.443 0.715 3.909

Table 6. Change of the accuracy criteria for adaptive SS

Type of SS

Pair with correlated errors Pair with correlated errors

IBP FC 10% FC 50% FC 95% FC

R2 MAE R2 MAE R2 MAE R2 MAE

Basic method

AdaptSS MLR 37.71% 54.88% 27.97% 57.20% 4.96% 33.99% 32.14% 34.39%

AdaptSS BU 12.53% 36.00% 9.43% 38.17% 0.92% 12.53% 6.99% 13.90%

AdaptSS AR 0.53% 2.08% 3.30% 11.70% 0.03% 1.51% 25.04% 31.30%

AdaptSS AR PA 0.34% 1.12% 3.25% 11.84% −0.04% 0.10% 25.12% 31.38%

AdaptSS AR SA 0.61% 2.64% 3.21% 12.65% −0.01% 0.10% 25.09% 31.33%

Best result

AdaptSS
VAR SA

AdaptSS
VAR SA

AdaptSS AR
PA ARDL PA

AdaptSS
VAR PA

R2 MAE R2 MAE R2 MAE R2 MAE

0.882 4.802 0.915 3.647 0.938 2.245 0.728 3.660
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The results presented in Tables 3–6 make it possible to conclude that the proposed method
(SS/AdaptSS VAR, ARDL, AR VAR, AR ARDL) is effective compared to the existing methods
considered. For non-adaptive and adaptive SS, the reduction in MAE compared to BU was on
average 37 and 25.1%, respectively. For FC IBP – 49.9 and 36%, for FC 10% – 48.8 and 38.2%,
for FC 50% – 25.8 and 12.5%, for FC 90% – 23.4 and 13.9%. Compared to the AR-based error
predictor, the MAE reduction for FC IBP was 11.5 and 2.1%, for FC 10% – 29.9 and 11.7%, for
FC 50% – 6.3 and 1.5%, for FC 90% – 39.1 and 31.3%, averaging 21.7 and 11.7% for non-adaptive
and adaptive SS, respectively.

5. CONCLUSION

The problem of developing a MOSS with a correlated error predictor has been solved. The
effectiveness of the proposed approach for developing a MOSS with a predictor has been demon-
strated for use in a quality control system for the fractional composition indicators of the light
diesel fraction from a complex fractionating column in a hydrocracking unit. The comparison of
the proposed MOSS with the BU and the AR model-based error predictor without considering error
cross-correlation showed a reduction in MAE by an average of 29.3 and 21% and an increase in the
coefficient of determination by 14 and 7% for non-adaptive and adaptive soft sensors, respectively.
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